Analysis of international trade of reactive nitrogen as food and fertilizer

Allison Leach, James Galloway, Justin Kitzes, Jan Willem Erisman, Albert Bleeker

Planet Under Pressure
Nitrogen: Too much of a good thing
26 March 2012

Overview of Talk

- 1. Why is N trade important?
- 2. Food: Trade of N embedded in food
 - 1. US, Netherlands, Brazil, Japan
 - 2. Total trade & bilateral trade of food N (2007)
- 3. Fertilizer: Brief overview
- 4. Summary

Why is the trade of N important?

- Sustains global population
- Provides foreign currency for all countries
 - Especially developing countries
- Factors to consider for N trade
 - 1. Amount N traded
 - 2. Associated Virtual N
 - Economic cost of environmental damage

Total Food N Trade Overview

Country

Total food **N imports**

- Total food N
 produced in country
- Virtual N released during food production

Total food **N exports**

Countries: US, Netherlands, Brazil, Japan

- Trade data calculated by food category
- Includes food and animal feed
- Data source: FAOSTAT

Total Food N Trade, Tg N

Food N Imports

Food N produced within country:

Remaining N

Total Food N Trade, Tg N

Total Food N Trade, Tg N

Brazil

0.1

0.2

Biggest exports: Cereals, Oilcrops

Netherlands
Pop: 17 million

0.4
0.2
1
Biggest exports: Milk, Cereals, Oilcrops

Food N Exports

Exported N

Remaining N

From exported N

From remaining N

Food N Imports

Food N produced within country:

Virtual N from in-country production:

Pop: 190 million

Pop: 127 million

0.9

0.4

Diggest exports: Fish

Biggest exports: Oilcrops, Cereals, Poultry

Note: Scale of graphs changed

Biggest exports: Cereals, Oilcrops

Netherlands

Pop: 17 million

19

Food N Exports

Exported N

Biggest exports: Fish

Remaining N

From exported N

Food N Imports

Food N produced within country:

Virtual N from in-country production:

63
Biggest exports: Milk, Cereals, Oilcrops

Japan Pop: 127 million

7
0
16

Pop: 190 million

Biggest exports: Oilcrops, Cereals, Poultry

Numbers at start of arrows = Virtual N released Arrows show relative magnitude of imports, > **0.05 Tg N**

Final number in country = Total imported food N **D**ata include animal feed; they do not include fish/seafood

Numbers at start of arrows = Virtual N released Arrows show relative magnitude of imports, > **0.05 Tg N**

Final number in country = Total imported food N **D**ata include animal feed; they do not include fish/seafood

Imports comparison, Tg N

N trade exceeding 0.05 Tg N

Exports comparison, Tg N

N trade exceeding 0.05 Tg N

International Fertilizer N Trade

Global ammonia and urea tradeInternational Fertilizer Industry Association and the ICIS

N Trade: Environmental Burden or Benefit?

Cost of environmental damage from food N exports

3.5 Tg Virtual N from exports

€ 28 billion to repair the damage

1.2 Tg Virtual N from exports

€ 14 billion to repair the damage

1.6 Tg Virtual N from exports

0.1 Tg Virtual N from exports

There are no policies that address the cost of N-related environmental damage caused by the production of exported goods

€ 12 billion to repair the damage

€ 0.4 billion to repair the damage

Summary

- 1. Significant amount of N is traded internationally as food and fertilizer
- 2. Environmental damage from food production is borne by the producing country
- 3. Current policies do not take this environmental (and economic) damage into account

Thank you!

Economic N footprint of food

Steak

Grocery store cost: 7 Euro

Health/environment cost: 1.9 Euro

Total cost = 8.9 Euro

Chicken Breast

Grocery store cost: 3 Euro

Health/environment cost: 1.1 Euro

Total cost = 4.1 Euro

Broccoli

Grocery store cost: 1.5 Euro

Health/environment cost: 0.2 Euro

Total cost = 1.7 Euro

Milk

Grocery store cost: 1 Euro

Health/environment cost: 0.4 Euro

Total cost = 1.4 Euro

Notes

Numbers at start of arrows = Virtual N released in a country Arrows show relative magnitude of imports, > 0.05 Tg N

Final number in country = Total imported food N These data include animal feed

Notes

Numbers at start of arrows = Virtual N released in a country Arrows show relative magnitude of imports, > 0.05 Tg N

Final number in country = Total imported food N These data include animal feed

N imports to Brazil: Total Food N (Tg N)

Notes

Numbers at start of arrows = Virtual N released in a country Arrows show relative magnitude of imports, > 0.05 Tg N

Final number in country = Total imported food N These data include animal feed

Food N Imports

Food N produced within country:

Food N Exports

Exported N

Remaining N

N exports from Brazil: Total Food N (Tg N)

Notes

Numbers at start of arrows = Virtual N released in a country Arrows show relative magnitude of imports, > 0.05 Tg N

Final number in country = Total imported food N These data include animal feed

Food N Imports

Food N produced within country:

Food N Exports

Exported N

Remaining N

Notes

Numbers at start of arrows = Virtual N released in a country Arrows show relative magnitude of imports, > 0.05 Tg N

Final number in country = Total imported food N These data include animal feed

Nitrogen imports to the United States: Cereals N (Tg N)

Cereals N Imports

Cereals N produced in US

Virtual N from US cereals production

Numbers at start of arrows = Virtual N released in a country **Final number in US** = Total imported food N Arrows show relative magnitude of imports, > **0.05 Tg N** These data include animal feed

Nitrogen exports from the United States: Cereals N (Tg N)

Arrows show relative magnitude of imports, > 0.05 Tg N

These data include animal feed

Cereals N produced in US

Virtual N from US cereals production

Nitrogen imports to the United States: Poultry N (Tg N)

Poultry N produced in US

Virtual N from US poultry production

Final number in US = Total imported food N

These data include animal feed

Arrows show relative magnitude of imports, > 0.005 Tg N

Nitrogen exports from the United States: Poultry N (Tg N)

Poultry N produced in US

Virtual N from US poultry production

Numbers in specific countries = Poultry N exported to a country

Arrows show relative magnitude of imports, > 0.005 Tg N

These data include animal feed

Results: Total Food N Trade

18

39

0.2

0.9

893

64

0.4

Production

Production

Production

Virtual N*, Tg Virtual N

Food weight, Tg food

Virtual N*, Tg Virtual N

Food weight, Tg food

Virtual N*, Tg Virtual N

Food weight, Tg food

Virtual N*, Tg Virtual N

Netherlands

Food N, Tg N

Food N, Tg N

Food N, Tg N

Brazil

Japan

US	Production	Imports	Exports	US Supply
Food weight, Tg food	857	71	175	75
Food Ν, <i>Tg N</i>	9	0.4	3	

2

46

0.4

1

13

0.1

0.2

58

0.9

Imports

Imports

Imports

753

N/A

43

0.3

N/A

822

N/A

120

N/A

NL Supply

BR Supply

JP Supply

3

43

0.3

1

84

0.6

1

1

0

0.1

Exports

Exports

Exports

Bilateral Food N Trade: Procedure

1. Started with FAOSTAT food trade matrix

- Because food trade matrix has secondary products (e.g. bread), conversion factors were used to convert them into primary product equivalents (e.g. wheat)
- Food trade matrix categories were mapped to the desired food product categories
- Remaining calculations same as total food N trade calculations, as described earlier (total N, Virtual N)

Issues with bilateral food trade analysis

"Single step" trade analysis

- Difficult to track products with more than one step
- If a product is grown in country A, then shipped from B → C, trade may only be reported from B → C, depending on how countries report data

2. Secondary products

- Data reported in secondary products (e.g. bread), whereas we need data in primary products (e.g. wheat)
- Use factors to convert secondary products into primary products

3. Location of livestock feed

 Feed imported into a meat-producing country becomes part of that's country's footprint, even though it was produced in another country

4. Virtual N from food production

 Use the US Virtual N Factors to estimate food production N, which assumes that all countries produce food similarly to the US

Fertilizer N Trade

Country

Total fertilizer
N imports

Total fertilizer N
 produced in
 country

Total fertilizer
N exports

- Fertilizer forms: ammonia and urea
- Note: No Virtual N here

Total Fertilizer N Trade, *Tg N*

Fertilizer N Imports

Fertilizer N Exports

Fertilizer N produced within country:

Remaining N

Note: Fertilizer trade exceeding 0.3 Tg fertilizer product,

fertilizer production exceeding 1 Tg fertilizer product

Nitrogen imports to the United States: Fertilizer N (Tg N)

Scaling of fertilizer N arrows is different than food N arrows Do not have Virtual N estimates for fertilizer production

Fertilizer N produced in US

Nitrogen exports from the United States: Fertilizer N (Tg N)

Do not have Virtual N estimates for fertilizer production

Results: Fertilizer

Total Fertilizer Trade for US, 2007

	Imports	Production	Exports	US Supply
Fertilizer (Tg fertilizer)	9	16	0	25
Fertilizer N (Tg N)	6	11	0	17

Notes:

Only included trade exceeding ~150,000 tonnes fertilizer N Fertilizer in the forms of ammonia and urea

What is Needed?

- Awareness in a country that action is needed to limit impacts of N losses
- Policy instruments in the country to limit N losses
- International harmonization of environmental regulations so countries are not disadvantage in trade