Chapter 2

The European nitrogen problem in a global perspective

Lead author: Jan Willem Erisman

Contributing authors: Hans van Grinsven, Bruna Grizzetti, Fayçal Bouraoui, David Powlson, Mark A. Sutton, Albert Bleeker and Stefan Reis

Executive summary

Nature of the problem

- Reactive nitrogen has both positive and negative effects on ecosystems and human health. Reactive nitrogen is formed through the use of fossil fuels releasing large amounts of nitrogen oxides into the atmosphere and through the production of ammonia by the Haber–Bosch process and using it in agriculture to increase our food, feed and fuel production. While the use of nitrogen as a fertilizer and chemical product has brought enormous benefits, losses of fertilizer nitrogen and combustion nitrogen to the environment lead to many side effects on human health, ecosystem health, biodiversity and climate.

Approaches

- The European nitrogen problem is placed in a global perspective, showing the European nitrogen fixation, transport and environmental impacts compared with different regions of the globe.

Key findings/state of knowledge

- Humans, largely through agriculture, but also through burning of fossil fuels, have had a huge impact on the nitrogen budget of the Earth. Europe is one of the leading producers of reactive nitrogen, but it is also the first region in the world where the issue was recognized and in some parts of Europe the reactive nitrogen losses to the environment started to decrease. Europe is a nitrogen hotspot in the world with high nitrogen export through rivers to the coast, NOx and particulate matter concentrations and 10% of the global N2O emissions.
- The consequences of nitrogen losses in Europe are visible and are on the average more pronounced than in the rest of the world. Nitrogen contributes to all environmental effects to some extent.
- There is a clear policy on reducing nitrogen oxide emissions that led to reductions by implementation of end of pipe technology. Europe is ahead compared to the rest of the world with NOx policies.
- Fertilizer production and use decreased in Europe in the early 1990s, in particular, due to the economic recession in the Eastern part of Europe. Currently, the fertilizer use in Europe is about 12 Mton, which is 4 Mton lower than in the 1980s, but increasing again. The nitrogen use efficiency of nitrogen in the EU, defined as the net output of N in products divided by the net input is about 36%. This is lower than the world average (50%) as fertilization rates in Europe are much higher.

Major uncertainties/challenges

- More quantification of the effects is needed to establish cause–effect relationships. Most is known about the exceedances of critical limits, but more quantitative results are needed on impacts, including biodiversity loss, ground water pollution and eutrophication of ecosystems; eutrophication of open waters and coastal areas resulting in algal blooms and fish kills; increased levels of NOx and aerosols in the atmosphere resulting in human health impacts and climate change; and the increased emissions of the greenhouse gas nitrous oxide resulting in climate change. The effects of nitrogen affecting the other biogeochemical cycles such as carbon and phosphorus need to be quantified on different scales.
- The complexity of multi-pollutant–multiple-effect interactions is a major hurdle to improving public awareness.
2.1 Introduction

Nature and its biodiversity could only exist because of the availability, even if limited, of reactive nitrogen (N_r) in the system, which is defined as all nitrogen compounds except for N_2. This reactive nitrogen was provided by limited natural sources such as lightning, biomass burning and biological nitrogen fixation. Because of the limited availability, nature became very effective in conserving and re-using reactive nitrogen compounds. Nitrogen, together with other nutrients and water, is the limiting factor for the production of food. Mankind has sought for different ways to increase the crop production necessary for food to sustain a growing population. This has led to the development of synthetic fertilizer production based on the Haber–Bosch process (Smil, 2001; Erisman et al., 2008). This additional availability of reactive nitrogen has led to increased crop production and to the intensification of agriculture. The large increase in population is due to intensification and extension of agricultural land, but also due to the availability of fertilizers. A recent estimate of the current human population supported by synthetic fertilizer is 48%, 100 years after the invention of the synthesis of ammonia from its elements (Erisman et al., 2008; Figure 2.1).

To maximize crop production, the availability of cheap fertilizer in the industrialized world led to excessive use of nitrogen, resulting in a large nitrogen surplus and increased nitrogen losses. As the use of fossil fuel in the industrial revolution expanded, fertilizer production increased similarly (see Figure 2.1). The industrial revolution was accelerated by the combustion of fossil fuels producing heat and power, but also polluting gases, such as carbon dioxide, sulphur dioxide and nitrogen oxides. The use of fossil fuels led at the same time to an increase in the production of fertilizer through the Haber–Bosch process, and to a replacement of manpower by machines increasing the productivity and yield per hectare, further accelerating excess nitrogen. Furthermore, the availability of fossil fuels made globalization possible, transporting food, feed, goods and products all over the world, and depleting nutrients in one area and concentrating nutrients in another area, e.g. in intensive livestock production (Galloway et al., 2008). These leakages from agriculture, industry and transport, in their turn, have led to a cascade of N through the global environment causing a number of different environmental effects: loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks through exposure to oxidized nitrogen (NO_x), ozone (O_3) and particulates, and destruction of the ozone layer.

Europe has benefited to a large extent from the increase in nitrogen, both economically as well as socially (see Jensen et al., 2011, Chapter 3 this volume). Agriculture has contributed to a large extent to GDP development and, apart from some poorer areas in Europe, hunger is no longer a key issue. The situation has, however, developed into overuse of nitrogen in agriculture as a straightforward ‘cheap’ insurance against low yields with all the concomitant negative side effects. Therefore the focus is to deal with the unwanted downside: optimizing use while minimizing adverse effects.

This chapter of the European Nitrogen Assessment (ENA) provides an overview of the European nitrogen problem in a global perspective. The chapter reviews existing knowledge, bringing different studies together to assess the European nitrogen situation relative to different priorities in other areas in the world. The specific processes and effects are addressed in more detail in the following chapters in this book. This chapter starts with an introduction on reactive nitrogen formation in nature, agriculture and through fossil fuel combustion. Then the nitrogen fluxes are described, including the losses to air and water, followed by a section describing the negative effects of nitrogen in Europe in a global perspective.

Figure 2.1 Trends in human population and nitrogen use throughout the twentieth century (Erisman et al., 2008). Of the total world population (solid line), an estimate is made of the number of people that could be sustained without reactive nitrogen from the Haber–Bosch process (dashed line), also expressed as a percentage of the global population (short dashed line). The recorded increase in average fertilizer use per hectare of agricultural land (blue symbols) and the increase in per capita meat production (green symbols) are also shown.
2.2 Reactive nitrogen

Reactive nitrogen, N_r, is defined here as all other nitrogen forms in our system apart from N_2. This includes oxidized nitrogen, mainly NO, NO$_2$, NO$_3$; reduced forms of nitrogen: NH$_4^+$, NH$_3$, and organic nitrogen: proteins, amines, etc., with different states of oxidation (Table 2.1).

Natural sources of the formation of N_r include volcanoes, biological nitrogen fixation in natural soils and lightning (Figure 2.2, Box 2.1) (Smil, 2001; Reid et al., 2005; Schlesinger, 2009; Sutton et al., 2008 and Hertel et al., 2011 (Chapter 9 this volume), Simpson et al., 2011 (Chapter 14 this volume), where details are provided) and weathering of rocks (Holloway and Dahlgren, 2002). Senescence of plants, wildlife and forest fires are natural processes that result in the re-distribution of N_r in the biosphere. Most of the abiotic natural sources of N_r are in oxidized forms, although wildlife and volcanos also emit reduced forms (Galloway et al., 2003; Schlesinger, 2009). In Europe natural sources of N_r are estimated to create annually 2–3 Mton N_r (van Egmond et al., 2002; Galloway et al., 2004). Anthropogenic activities enhancing the formation of N_r include cultivated Biological Nitrogen Fixation (BNF) in agriculture, N_2 fixation through the Haber–Bosch process, the burning of fossil fuels and forest fires (Figure 2.2).

Table 2.1 Examples of nitrogen components and their oxidation state

<table>
<thead>
<tr>
<th>Oxidation state</th>
<th>Example</th>
<th>Component name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced forms</td>
<td>-3</td>
<td>NH$_3$ Ammonia</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>NH$_2$NH$_2$ Hydrazine</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>HNNH Diimide</td>
</tr>
<tr>
<td>0, non-reactive</td>
<td>N$_2$</td>
<td>Di-nitrogen</td>
</tr>
<tr>
<td>Oxidized forms</td>
<td>+1</td>
<td>NO Nitrogen oxide</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>HNO$_2$ Nitrous acid</td>
</tr>
<tr>
<td></td>
<td>+3</td>
<td>NO$_3$ Nitrogen dioxide</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>HNO$_3$ Nitric acid</td>
</tr>
</tbody>
</table>

Nitrogen Fixation (BNF) in agriculture, N_2 fixation through the Haber–Bosch process, the burning of fossil fuels and forest fires (Figure 2.2).
Of the major nutrients needed for biomass production, nitrogen is most commonly the limiting one, at least in terrestrial systems (De Vries et al., 2011, Chapter 15 this volume). Phosphorus and potassium are the other major limiting nutrients. Higher plants can only use nitrogen after it has been converted to reactive forms such as nitrate (NO$_3^-$) or ammonium (NH$_4^+$). There are basically three ways of accomplishing this:

- decay of organic matter by microbes in soils (dead organisms, leaves, manure, etc.) and eventually release biologically available forms of N;
- Biological Nitrogen Fixation (BNF): nitrogen-fixing organisms (e.g. bacteria) ‘fix’ atmospheric N$_2$ into biologically available forms of reactive nitrogen;
- production and application of reactive nitrogen as inorganic fertilizer.

2.2 Human intervention in the nitrogen cycle

The nitrogen cycle with an explanation of the most important processes is given in Box 2.1. Humans increase the creation of N$_2$ by three processes. The first process is the combustion of fossil fuels for energy production, which generates nitrogen oxides from the oxidation of N$_2$ or fossil organic N in the fuel. Second, the production of fertilizers and chemicals (e.g. nylon, explosives), mainly through the Haber–Bosch process, which creates NH$_3$ by the reaction of N$_2$ and H$_2$. And third, the planting of nitrogen-fixing crops (e.g. legumes) which convert N$_2$ to NH$_3$ incorporated in the organic matter.

The primary emission of oxidized nitrogen is through the formation of nitrogen oxides (NO and NO$_2$) and nitrous oxide (N$_2$O). Through reactions in the atmosphere other oxidized nitrogen compounds are formed. Oxidized nitrogen has several sources, but is formed mainly by combustion processes where fuel N is oxidized or atmospheric N$_2$ is oxidized at high temperatures. These processes occur in industries, fuel combustion for transportation and energy production. Among the other sources of oxidized nitrogen, soils are most important (Skiba et al., 1994; 1997).

The Haber–Bosch process has facilitated the production of agricultural fertilizers on an industrial scale, dramatically increasing global agricultural productivity in most regions of the world. The number of humans supported per hectare of arable land has increased from 1.9 to 4.3 persons between 1908 and 2008 (Erisman et al., 2008). This increase was only possible because of nitrogen from the Haber–Bosch process.

An additional use of fertilizer is the production of crops and biomass for bioenergy and biofuels. Currently, bioenergy contributes 10% to the global energy use, while biofuels contribute 1.5% and the influence on global fertilizer use is still marginal. However, present climate and energy policies tend to stimulate biofuel production so that the influence of Haber–Bosch nitrogen will tend to grow, depending on which soils and crops are used and in how far N- efficiencies in food production can be increased (Erisman et al., 2009). The environmental impacts of inefficient use of fertilizer and livestock breeding systems result in groundwater pollution, airborne emission of ammonia and nitrous oxides, contributing to excess nitrogen cascading through the environment with negative impacts on human health and ecosystem services.

Sources of reduced nitrogen include emissions from the fertilizer industry and/or other industry applying ammonia as a

Box 2.1 The global nitrogen cycle and the main processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Nitrogen Fixation</td>
<td>2N$_2$ + 3H$_2$ → 2NH$_3$. This is a natural process performed by a number of diazotrophs, such as Anabaena (a cyanobacterium), and Rhizobium (the symbiotic bacterium found in legume root nodules).</td>
</tr>
<tr>
<td>Nitrogen fixation</td>
<td>Humans influence the nitrogen cycle through industrial N fixation. Conversion of N$_2$ into NH$_3$ by the Haber–Bosch process.</td>
</tr>
<tr>
<td>Nitrification</td>
<td>This is the oxidation of ammonia to nitrates. The initial oxidation to nitrite, 2NH$_3$ + e$^-$ + 3O$_2$ → 2NO$_2^-$ + 2H$_2$O + 2H$^+$, is performed by bacteria such as Nitrosomonas and the next step oxidation to nitrate, 2NO$_2^-$ + O$_2$ → 2NO$_3^-$ is performed by Nitrobacter</td>
</tr>
<tr>
<td>Denitrification</td>
<td>Some bacteria, such as Pseudomonas, are able to use nitrate as a terminal electron acceptor in respiration: 2NO$_3^-$ + 12H$^+$ + 10e$^-$ → N$_2$ + 6H$_2$O.</td>
</tr>
<tr>
<td>Assimilation</td>
<td>Plants assimilate nitrogen in the form of nitrate and ammonium. The nitrate assimilated is first reduced to ammonium, and then combined into organic forms, generally via glutamate. Animals generally assimilate nitrogen by first breaking protein down into amino acids.</td>
</tr>
<tr>
<td>Decay (ammonification) and excretion</td>
<td>When plants and animals decay, putrefying bacteria produce ammonia from the proteins they contain. Animals also produce breakdown products such as ammonia, urea, allantoin and uric acid from excess dietary nitrogen. These compounds are also targets of ammonification by bacteria.</td>
</tr>
<tr>
<td>Annamox reaction</td>
<td>This is conversion of nitrite and ammonium to pure nitrogen gas (N$_2$) in seas and oceans, hot springs, hydrothermal vents, and many freshwater wetland ecosystems, which than escapes to the atmosphere. The reaction mechanism is triggered by a newly discovered bacterium, called Brocadia anammoxidans.</td>
</tr>
<tr>
<td>Volatilization</td>
<td>Turns fertilizers and manures on the soil surface into gases like NH$_3$, N$_2$O and N$_2$ that also join the atmospheric pool.</td>
</tr>
<tr>
<td>Weathering of rocks</td>
<td>The process where stored nitrogen in rocks is released by wind, rain and erosion.</td>
</tr>
<tr>
<td>Runoff</td>
<td>Carries the nitrogen in fertilizers and manure and the nitrogen in the soil into rivers and streams causing a concern for water quality.</td>
</tr>
<tr>
<td>Leaching</td>
<td>Carries nitrates deep into the soil so that plants can no longer use them, producing a dual concern: for lost fertility and for water quality, as nitrates enter the groundwater and wells that provide drinking water.</td>
</tr>
</tbody>
</table>
chemical, from fertilizer application, and plant senescence, from livestock manure (in the field, housing systems and application of manure), cars equipped with three way catalysts to reduce NOx, industrial emissions applying urea or ammonia Selective Catalytic Reduction (SCR) to reduce emissions, households using ammonia as a cleaning agents and excretion by cats and dogs.

Total denitrification of nitrate by microbes in soils, groundwater and surface water is considerable. Particularly when nitrate concentrations are comparatively high, denitrification is incomplete and small quantities of N2O are released in the process. N2O is also released during nitrification. N2O is also a by-product in the Haber–Bosch process of synthetic fertilizer production.

2.3 Nitrogen use in agriculture

Europe is one of the world's largest and most productive suppliers of food and fibre. In 2004 Europe produced 21% of global meat production and 20% of global cereal production. About 80% occurred in Europe, defined here as the 25 European countries, EU25 (IPCC, 2007). The productivity of European agriculture is generally high, in particular in Western Europe: average cereal yields in the EU are more than 60% higher than the global average (EFMA, 2010). The major sources of N in agriculture are Biological Nitrogen Fixation and the use of inorganic and organic fertilizers. This section will outline the major sources for European conditions comparing this with global context. Important for the environmental aspect of agricultural nitrogen is the nitrogen use efficiency. Finally, the influence of bioenergy on the agricultural nitrogen is described.

2.3.1 Biological Nitrogen Fixation (BNF)

Biological nitrogen fixation (BNF) is a vital biological process which allows atmospheric molecular di-nitrogen (N2) to be converted into mineral nitrogen (NH3) that can then be assimilated by living organisms. This process is carried out by specific N-fixing bacteria that are either free-living in soil or water or associated with the root nodules of legume plants.

Global terrestrial BNF is estimated at 120 Tg N/yr, of which a little less than half is fixed in oceans, the rest on land (Smil, 2001). BNF in Europe is estimated at 14.8 Tg N/yr in natural soils (Galloway et al., 2004). Crop BNF, the human induced BNF, was estimated by Galloway et al. (2004) to be 30 Tg N on the global level and for Europe 3.9 Tg N/yr, while Velthof et al. (2009) estimated for Europe a value of 5 Tg N/yr. The distinction between natural and crop BNF is difficult to make when fertilizers are added or atmospheric deposition substantially contributes to nitrogen inputs as this can suppress BNF (van Kessel and Hartley, 2000).

2.3.2 Nitrogen in mineral and organic fertilizer

Mineral fertilizer

Nitrogen is an essential element for plant growth, being a component of chlorophyll, amino acids, proteins and enzymes and increased nitrogen application leads to higher crop production (see e.g. Olson and Kurtz, 1982). Sufficient supply of nitrogen is required for plant metabolism, and addition of N will essentially increase the efficiency of photosynthesis to produce carbohydrates. Higher inputs of nitrogen have increased yields as shown in Figure 2.3 where the changes in yield and fertilizer intensity are plotted for 1961–1990. In the USA and Europe the yield has decreased during recent years showing that the efficiency of the added nitrogen has become less.

Nitrogen fertilizers are manufactured by combining atmospheric N2 with hydrogen from methane or gasified coal to produce ammonium nitrate, ammonium sulphate, or urea. Nitrogen fertilizer data throughout the world shows that the annual use rate is increasing (FAO, 2010c; Davidson 2009). For Europe there is no inventory of fertilizer data before 1960. Therefore, we used application rates in kilograms of fertilizer per hectare for the years 1910, 1920, 1935 and 1950 as reported by Moïsssey Postan and Rich (1952) to construct the European time series. Figure 2.4 illustrates the trends in amounts of applied fertilizer in Europe compared to the whole world. There is an overall increase in fertilizer application on a global scale. There is some anti-correlation with the gas prices explaining the reductions in application. Throughout the 1930s, European consumption of nitrogenous fertilizers remained above half of the world's total while the continent's arable land accounted for only 12% of all crop land. The applications were heavily concentrated in Germany, Benelux, England and France and applications outside the Northwestern part of the continent remained marginal. After a decrease of production during the Second World War their synthesis and applications began to grow substantially only during the early 1950s. The big drop in 1990–1992 has two main reasons: (1) the collapse of the Eastern European countries economy, which had a dramatic effect; and (2) the impact of the McSharry reform (new CAP in 1990). This was the introduction of the mandatory set aside, and the farming community has 'heavily overreacted' to this new policy. Then we have seen a slight recovery in the following years (until 1996), shown in Figure 2.4. Europe accounts currently for about 10% of the global use of N fertilizers. After the political changes in Eastern Europe around 1989, the economic breakdown resulted in a strong decrease in fertilizer application, which is reflected in Figure 2.4. The mean national application rate varies very much in Europe from the lowest level of 42 kg/ha of agricultural land in Portugal to 243 kg/ha on grassland in the Netherlands.

Manure and livestock

The process of livestock production does not directly lead to the creation of new N, but to a concentration of N, and a redistribution of it over different spatial scales. This occurs through the intake of feed, international and local transport of feed and the emissions to air and soil/water. Therefore, livestock production is very important for N, as an external
The European nitrogen problem in a global perspective

input in different regions or an internal cycling of nitrogen with appreciable losses to the environment. Europe has a large share of animals and animal breeding farms in the world (Table 2.2; Figure 2.5). Meat production in Europe in 2004 was about 20% of the world production, milk production about 30% (source FAOstat: FAO, 2010c). The number of animals is shown in Table 2.2. The regions of most intensive livestock production in Europe include Denmark, the Netherlands, Belgium, Brittany, Spain, Poland, the UK and the Po Valley (Italy). The density of pigs per unit area is among the highest in the world together with some regions of China and the USA as can be seen in Figure 2.5. Cattle are more equally distributed over the world and are linked to the grassland areas (land bound). Nitrogen cycling within European livestock production is very important with the total N excretion from animals almost equalling the use of mineral fertilizer in Europe (Oenema et al., 2007). Although livestock production does not directly lead to the production of new N fertilizer, there are relevant indirect interactions. The nitrogen supply for animal feeds is dependent on new N supply both through fertilizers and BNF. Thus increasing livestock production, results in additional demands for nitrogen fixation.

Livestock manure production in the world was plotted by Davidson (2009) and is shown in Figure 2.4. European data are not available for the period before 1960. Data were obtained from Buijsman (1986) and OECD to compile a similar trend for Europe, plotted in Figure 2.4, with the global and European fertilizer use for the same period. The data are highly uncertain. There is a difference between the ratio of manure to fertilizer use globally and that in Europe. Currently, about equal amounts of nitrogen are applied in manure and fertilizers in Europe. Globally, however, the amount of nitrogen applied in manure was an order of magnitude higher than that applied in fertilizer, currently decreased to a factor of two. Apparently much manure is produced globally on unfertilized (grass)lands, whereas in Europe most agricultural land is fertilized. The inputs in agriculture in Europe are further specified and presented in De Vries et al., 2011 (Chapter 15 this volume) and Leip et al., 2011 (Chapter 16 this volume).

2.3.3 Nitrogen use efficiency

During the last decade the EU Common Agricultural Policy (CAP) has been reformed to reduce overproduction, reduce environmental impacts and improve rural development. This is not expected to greatly affect agricultural production in the short term (OECD, 2001). Excessive application of nitrogen leads to an imbalance as not all applied nitrogen can be taken...
up by the crops. The nitrogen surplus or nitrogen balance is an indicator for the agricultural pressure on the environment. The gross nutrient balance is calculated by subtracting the sum of the total nitrogen output in harvested crops and forage from the total nitrogen input calculated as the sum of total fertilizer N (inorganic fertilizers, organic fertilizers: organic inputs from non-agricultural sources: urban compost and sewage sludge spread on agricultural land), livestock manure production, manure stocks (stock levels, imports and exports of livestock manure), biological nitrogen fixation and atmospheric deposition of nitrogen compounds (EEA, 2005b; OECD, 2001; Campling et al., 2005).

Nitrogen use efficiency (NUE) can be defined in different ways. Usually in agriculture it is the nitrogen in the product leaving the farm divided by the nitrogen input to the farm. The nitrogen use efficiency (%), generally increases with a decrease in N input and N surplus as calculated by the nitrogen balance. The efficiency is less than 50% in countries with an N surplus above 80 kg/ha/yr (the Netherlands, Belgium, Denmark and UK), between 50% and 70% in countries with an N surplus between 50–80 kg/ha/yr and more than 70% in countries with an N surplus below 50 kg/ha/yr, except for Portugal and Spain (OECD, 2006).

The worldwide database compiled by FAO shows that the NUE has decreased exponentially in all countries except Western Europe and the United States (Figure 2.6). The driver for these trends is the increasing amount of N fertilizer applied in all world regions except Europe. In the analysis, the grain production was computed as the sum of all cereal crops and maize production. Grain production has increased linearly since 1960 in the United States and Western Europe (Hatfield and Prueger, 2004). These changes in grain production have caused a slight increase in NUE in the past decade. However, these trends may hide the effect of manure, which is applied in large amounts. In addition, the NUE of fertilizer in the United States and Western Europe is low because of over-application (see also Figure 2.3).

Another approach for defining the NUE is to consider the consumed amounts of calories and of protein as effectively used by humans. Ultimately, nitrogen for food production aims to provide the necessary proteins. Animal protein is much more inefficient in terms of NUE than plant proteins. The more efficiently protein is obtained by humans, the higher the NUE (van Grinsven et al., 2003). Estimates for different regions of the world (Figure 2.7, van Grinsven et al., 2003) show major regional differences in protein consumption per capita. The differences mainly result from variation in the fraction of protein in diet provided by animal products and in the type of animal product. In the developed countries more animal protein is consumed than in developing countries, where, especially in the low protein countries almost all proteins are consumed through vegetable food products.

Rough estimates can be made of the amount of nitrogen that was used in agriculture to produce the consumed amount of protein. This yields a nitrogen consumption efficiency for the different regions in the world (Figure 2.7). In western societies about 60% of the harvested crop, or whole animal is converted

<table>
<thead>
<tr>
<th>Livestock (1000 head)</th>
<th>Europe</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry</td>
<td>1 329 162</td>
<td>15 146 608</td>
</tr>
<tr>
<td>Pig</td>
<td>164 794</td>
<td>917 635</td>
</tr>
<tr>
<td>Cattle</td>
<td>100 508</td>
<td>1 310 611</td>
</tr>
<tr>
<td>Small ruminant</td>
<td>142 476</td>
<td>1 722 175</td>
</tr>
</tbody>
</table>

Source: From Steinfeld et al., 2006

Table 2.2 Livestock numbers in Europe and the world in 2005

Figure 2.4 Global and European livestock manure and fertilizer nitrogen consumption (Kton N). Global data are obtained from Davidson (2009). European data are constructed from animal numbers and excretion factors by Buijsman (1986) and the INTEGRATOR model (de Vries et al., 2009).
Figure 2.5 Global pig (top) and cattle (below) density in 2005 (FAO, 2010b).
to food products. Without correcting for over consumption of proteins as compared to the recommended intake of protein (60 g per day capital or 3.5 kg N per year capita; recommended by the World Health Organisation (WHO, 2007), the nitrogen efficiency of consumption varies from 10% in the USA to 28% in China (van Grinsven et al., 2003). Present Chinese consumption is far less N-efficient compared to the data in Figure 2.7, because animal protein consumption has increased substantially since 1995.

2.3.4 Biomass and food production and future fertilizer consumption in Europe

Biomass is the oldest resource of energy used by mankind and has been the main source of energy until a century ago (Smil, 2004). Because of the inherently low efficiency of the photosynthetic process, no form of energy supply has such low power densities, and hence such high land demands (and fertilizer), as does the production of phytomass (Smil, 2004). In principle, there is globally enough annual growth of new biomass to cover up to four times the human annual energy use (Dornburg et al., 2007). However, in order to grow, collect and use biomass in a sustainable way to satisfy the human energy requirements, a well regulated and optimized process is needed. The European Fertilizer Manufacturer Association (EFMA) reports that in Europe the most ambitious Action Plans for biofuels production are still those of France and Germany. However, the UK, Sweden, Italy and Greece now also have ambitious objectives for biofuels production, closely followed by Austria and Denmark, the original ‘pioneer’ countries in this domain (EFMA, 2010). There are sufficient domestic resources to meet the EU targets set for the year 2010 but if more stringent goals are set for bioenergy in the future, it will be challenging to find sufficient resources in Europe and biomass imports from outside the EU (Fagerås et al., 2006; Londo and Deurwaarder, 2007). There is a major challenge to reach the targets in a sustainable way and there is much discussion on the availability of different biomass sources for bioenergy application, especially in relation to the additional use of fertilizer and the effect on greenhouse gas emissions (N2O).

These developments are already affecting the food area as we see that energy crops are grown on former cropland and grassland, even without using the energy crop premium. According to EFMA (2010), in the coming decade, the production of biofuels will contribute to the 4.7% increase of nitrogen consumption in the EU-27 between 2009 and 2019. These prospects do not take into account possible new generations of bioenergy which might present an additional potential. For the longer term, recent scenario’s predict a much higher increase of fertilizer application as the result of increased food demand, biofuels production and limited land availability (Erisman et al., 2009).

2.4 Energy, transport and industry

The major link of energy, transport and industry to the nitrogen issue is the direct emission into the atmosphere of nitrogen oxides (NOx) from combustion of fossil fuels. The gases disperse, react and are eventually lost through deposition to the earth surface as gas or aerosol. Nitrogen oxides contribute to a variety of adverse effects, such as the formation of tropospheric ozone, the deposition of acidifying and eutrophying substances and the formation of secondary aerosols (mainly ammonium nitrates). While aerosols having an impact in Europe are largely formed from European emissions, background ozone levels in particular are significantly affected by NOx emissions throughout the Northern Hemisphere (with substantial contributions from emissions in Asia and North America).

There are other links with energy, transport and industry to the nitrogen issue, which are much less well quantified. Energy (coal or natural gas) is needed to produce nitrogen fertilizers and thus related to energy. Furthermore, through the use of fossil fuels the labour by man and draught animals has been replaced by machines and agriculture could be expanded and intensified leading to higher production in total and per ha. Furthermore, increased transportation of fertilizer, feed, food, fuel and other products has led to a redistribution of N over the world, while emitting NOx on the way.

2.4.1 NOx formation processes

NOx is mainly formed by two processes: thermal NOx, when nitrogen and oxygen in the combustion air combine with one another at the high temperatures in a flame, and fuel NOx by the reaction of nitrogen bound in the fuel with oxygen in the combustion of air. A third and generally less important source of NOx formation is prompt NOx, that forms from the rapid reaction of atmospheric nitrogen with hydrocarbon radicals (Dean and Bozzelli, 1999). Large combustion plants in power generation contribute to NOx emissions from high stacks,
while road transport sources are mainly line sources. Urban traffic, residential and commercial combustion as well as off-road sources can be classified as area sources. NO\textsubscript{x} emissions in Europe have fallen markedly in the last decades, mainly due to stringent emission controls applied to large combustion plants (EC Large Combustion Plants Directive, EEA, 2005a) and the EURO standards for road transport vehicles. At the same time, overall emission control due to effect-based regulations (EC National Emissions Ceiling (NEC) Directive and Gothenburg Protocol) have led to reductions in other sectors which have contributed to this decline (see Hertel et al., 2011, Chapter 9 this volume).

Total non-transport NO\textsubscript{x} emissions in Europe are currently about 2000 kton/yr (EEA, 2005a). Emissions of NO\textsubscript{x} from public electricity and heat production in the EU fell by 45% over the period 1990 to 2004. If the structure of power production had remained unchanged from 1990 then by 2004 emissions of NO\textsubscript{x} would have increased by 33% above their 1990 levels, in line with the additional amount of electricity and heat produced. This decoupling of NO\textsubscript{x} emissions and electricity and heat production over the period 1990 to 2004 has been due to the following (EEA, 2005a).

- The introduction of low-NO\textsubscript{x} combustion technology and flue gas treatment, which led to a 49% reduction.
- Efficiency improvements, which resulted in a 14% reduction.
- The switch in the fuel mix, away from coal and fuel oil towards natural gas, which led to an 8% reduction.
- The lower share of nuclear and non-thermal renewable energy (i.e. excluding biomass) in 2004 compared to 1990, which actually increased emissions by 3%.

The overall effect was a 45% reduction in NO\textsubscript{x} emissions in 2004 compared to 1990 levels.

The total transport emission of NO\textsubscript{x} from Europe is currently about 8000 kton/yr. The specific emissions of air pollutants from passenger and freight transport decreased for most modes of transport, more so for passenger transport than for freight transport (EEA, 2007). The highest reduction of specific emissions can be found in the road sector, following the increasingly stricter emission standards. Rail only slightly improved its performance over the past decade. Inland waterway freight transport stabilized its emissions per tonne-kilometre, while maritime passenger and freight transport increased their specific emissions over the past decade.

2.4.2 Additional NO\textsubscript{x} from bioenergy use

Biofuels and bioenergy are forms of energy (heat, power, transport fuels or chemicals) based on different forms of biomass. Recently, the EU adopted new targets for sustainable energy and greenhouse gas (GHG) emission reductions: 20% GHG reductions and 20% contribution of sustainable energy sources, including a target of 10% share of biofuels in the transportation sector in 2020 (EU, 2009). It is clear that biomass as transport fuel (biofuels), electricity and heat production (bioenergy) and Substitute Natural Gas (SNG or Green gas) will be a major component necessary to reach the targets. By 2050, it is estimated that biomass and waste utilization could rise from 9.0 to 13.5 EJ/a (215–320 Mtoe) (EU Biomass Action Plan, 2007).

Increased biomass production potentially requires more fertilizer inputs, which will accelerate the nitrogen cycle (see Section 2.7). Additional fertilizer use will also cause additional N\textsubscript{2}O losses. Furthermore, bioenergy emits NO\textsubscript{x} into the atmosphere when combusted without de-NO\textsubscript{x} installations such as SCR. Additional emissions of NO\textsubscript{x} might be expected because the fuel-N is higher compared to that in fossil fuels and/or no de-NO\textsubscript{x} installations will be used for small scale applications and because more energy (combustion) is needed to produce one unit of electricity or transport. The
direct nitrogen emissions from different options to produce heat and power were compared by Pehnt (2006). Power generating systems excluding biomass are considerably better than the ‘reference mix’ which is based on fossil fuels, but biomass systems are well above the reference mix. An exception to this is systems with co-combustion of forest wood. This is due, in particular, to the fact that the NOx emissions of small combustion plants tend to be higher due to the lower temperature and efficiency. A special case is the biogas system. The nitrogen emissions of this system are more than the reference mix owing to the ammonia emissions resulting from the animal manure of the agricultural system prior to combustion (Pehnt, 2006).

2.4.3 European NOx emissions in a global perspective

Figure 2.8 shows global NOx emissions for the year 2000 (EDGAR, 2010). Europe contributed about 14% of global NOx emissions in the year 2000, which was lower than that by North America (17%) and Asia (12% for S/SE Asia and 14% for East Asia, respectively). By far the largest sectoral contribution (Figure 2.9) to European NOx emissions stems from mobile combustion sources, contributing an estimated 62% (road transport 30.7%, other mobile sources 16.2% and international shipping 15%), followed by stationary combustion (15.7% from large combustion plants and 4.5% residential and commercial combustion). Current inventories, such as the EDGAR inventory used here, often do not include data on natural and biogenic sources of emissions (or if so only partially), as can be seen in Figure 2.9 showing a very low contribution from biogenic and natural sources.

Figure 2.10 indicates the estimated atmospheric transport distance of NOx emissions of Europe and North America (Sanderson et al., 2008) showing that Europe is substantially impacting parts of Asia and North America, and vice versa Europe is mostly influenced by emissions from North America. A few percent of the NOx emissions from North America are reaching Europe. The Taskforce on Hemispheric Transport of Air Pollution states that on average 75% of the NOx emissions in Europe is deposited within Europe, with small fractions falling on North America (1%) (Sanderson et al., 2008); South Asia (2%); East Asia (2.5%), and the remainder deposited in the oceans, and Russia.

2.5 Global and European nitrogen budget

Globally, it is estimated that about 57% of anthropogenic nitrogen fixation results from the manufacture of nitrogen-containing fertilizers, 29% from cultivation of nitrogen-fixing crops, and 14% from burning fossil fuels (see Table 2.3, Erisman et al., 2005). Fixation occurs in marine systems...
as well, but those rates are highly uncertain. Van Egmond et al. (2002) presented the estimated input and output flows for Europe. Updated values for Europe are presented by Leip et al., 2011 (Chapter 16 this volume). The export is lower than the import of N$_r$. The remaining part is stock increase in vegetation, soils and water, but the largest part is denitrified to the atmosphere.

The atmospheric emissions consist of oxidized and reduced forms of N. The total NO$_x$ emission in EU27 is currently 11 Mton NO$_x$ and its distribution is shown in Simpson et al., 2011 (Chapter 14 this volume). The total emissions of reduced nitrogen to the atmosphere amount to 4 Mton NH$_3$ (EU27) (Hertel et al., 2011, Chapter 9 this volume). The total emission of oxidized and reduced nitrogen in Europe is not much different, but the spatial and temporal variation is different and the chemical behaviour in the atmosphere is different. Therefore they have a different footprint, with oxidized nitrogen being transported over much larger distances. As a result, NO$_x$ emissions are much more of a global problem (also linked to O$_3$ background) than the NH$_3$ emissions.

Total deposition of oxidized nitrogen in Europe (EU27) in 2006 was 1.7 Mton N and for reduced nitrogen 2.3 Mton, the total nitrogen deposition being 4 Mton N per year and the distribution is given in Hertel et al., 2011 (Chapter 9, this volume). The highest nitrogen deposition occurs in central Europe. Deposition of oxidized N is significant in the UK, the Netherlands, Germany and the Po valley (Italy). In addition, these areas present the highest deposition of reduced N, as a result of the intensive livestock production. In the regions of Europe with intensive agriculture spatial variability of nitrogen emissions and the deposition climate is high.

More than half of the fertilizer that is produced in Europe is exported as fertilizers or agricultural products, mainly to the USA and Asian countries. Most of the nitrogen emitted into the air is deposited again on the land surface even though about one third is exported outside Europe, mainly as NO$_x$ and particles. Riverine transport to outside Europe is somewhat higher than atmospheric transport. The difference in the nitrogen balance in different regions can be derived from Figure 2.11, where the nitrogen budgets for the continents are given (Galloway et al., 2004). There are large differences, with BNF being the largest source in Latin America, Oceania and Africa and in all other regions it is fertilizer input. Also the major outputs differ: in Africa, Asia and Latin America most output is through riverine transport, in Oceania most of the output occurs via the atmosphere and in Europe and Northern America most of the N$_r$ is exported through fertilizer and products.

Global and European N$_r$ production in 2000 and the different fluxes are presented in Table 2.3. Based on the numbers in Table 2.3 it can be calculated that the nitrogen efficiency, defined as the product output divided by the total inputs, in agriculture in Europe in the year 2000 was 36% compared to a global average of 50%. The nitrogen consumption by humans in Europe was 5.5 kg N per person compared to 4.3 kg N per person globally. The gross input necessary for consumption in Europe was 75 kg N per person compared to 45 kg N per person globally. The agricultural system and consumption in Europe therefore uses and wastes much more nitrogen than the global system.

Apart from the creation of new N$_r$, there is a fair amount that is transported over the globe and within Europe, concentrating N$_r$ in certain regions where its use is not always efficient. In 2005, ~45 Tg N of the ~190 Tg N of N$_r$ created was traded internationally (Figure 2.12). Over the preceding decade, global trade of N-commodities increased two-fold faster than the rate of N$_r$ fixation (Galloway et al., 2008).
Unlike aquatic or atmospheric transport, where N is diluted to varying degrees, commerce typically results in injection of N to ecosystems in more concentrated doses. Regions that consume N-containing products, such as meat and milk, are often far removed from regions that produce the commodity and thus do not have to bear the environmental cost of the production.

2.6 Consequences of the nitrogen cascade

There are many benefits of nitrogen, especially through the Haber–Bosch production. These are discussed by Jensen et al. 2011 (in Chapter 3, this volume). Here the focus is on the adverse effects in Europe in the global context. Nitrogen in its various chemical forms plays a major role in a great number of environmental issues (see Box 2.2). It contributes to acidification and eutrophication of soil, groundwater and surface

Table 2.3 Global and European current inputs of N to the biosphere and per person. In brackets: the percentage of the total budget (Erisman et al., 2005)

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Europe</th>
<th>Global</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg N (%)</td>
<td>Tg N (%)</td>
<td>Tg N per person</td>
<td>Tg N per person</td>
</tr>
<tr>
<td>Biological N fixation</td>
<td>90 (24)</td>
<td>14.8 (28)</td>
<td>15.9</td>
<td>55.0</td>
</tr>
<tr>
<td>Lightning</td>
<td>5 (1)</td>
<td>0.1 (0)</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>95 (25)</td>
<td>14.9 (28)</td>
<td>16.8</td>
<td>55.4</td>
</tr>
<tr>
<td>Haber–Bosch N fertilizer & industry</td>
<td>85 (23)</td>
<td>21.6 (41)</td>
<td>15.0</td>
<td>80.3</td>
</tr>
<tr>
<td>Biological N fixation in agriculture</td>
<td>33 (9)</td>
<td>3.9 (7)</td>
<td>5.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Animal feed imports</td>
<td>—</td>
<td>7.6 (14)</td>
<td>—</td>
<td>28.3</td>
</tr>
<tr>
<td>Combustion in industry and transportation</td>
<td>21 (6)</td>
<td>6.1 (11)</td>
<td>3.7</td>
<td>22.7</td>
</tr>
<tr>
<td>Total</td>
<td>140 (37)</td>
<td>39.2 (74)</td>
<td>24.5</td>
<td>145.7</td>
</tr>
<tr>
<td>Natural N fixation in oceans</td>
<td>140 (37)</td>
<td>—</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>53.2</td>
<td>66.1</td>
<td>201.1</td>
</tr>
</tbody>
</table>

Figure 2.10 The transport distance of NOx emissions of Europe and North America over the globe. Shown is the percentage change in deposition of NOx in each NOx emission perturbation experiment relative to the control run, using multi-model annual mean deposition fluxes (Sanderson et al., 2008).

Figure 2.11 Nitrogen input and output (Tg) for different regions of the world (data from Galloway et al., 2004).

Figure 2.12 Nitrogen input and output (Tg) for different regions of the world (data from Galloway et al., 2004).
waters, decreasing ecosystem vitality and biodiversity and causing groundwater pollution through nitrate and aluminium leaching. Nitrogen compounds play an important role in carbon sequestration, global change, and formation of ozone, oxidants and aerosols, potentially posing a threat to human health and affecting visibility. Each of the emissions takes part in the cycling of N causing a number of different effects with its consequent linkages. For example, reactive N emitted to the atmosphere from fossil fuel combustion, in sequence can cause tropospheric ozone levels to increase, visibility to decrease and atmospheric acidity to increase. Once deposited from the atmosphere, reactive N can acidify soils and waters, over-fertilize forests, grassland and coastal ecosystems, and can then be re-emitted to the atmosphere as nitrous oxide contributing to global warming and stratospheric ozone depletion. The environmental changes will continue as long as N remains in circulation, for reactive N once created, and then lost to the environment, can be transported to any part of the Earth system, no matter where it was introduced. This sequence of effects has been termed the nitrogen cascade. In principle every pollutant can cause a cascade of effects, however nitrogen stands out because it can occur in many very mobile compounds that can cause a wide range of effects.

2.7 Effects of nitrogen on the European environment

While some environmental problems are strictly local, like soil and groundwater pollution or exposure to high concentrations, N-related problems include the regional to global scales. The emissions of N\textsubscript{2}O readily spread across the atmosphere and have a global contribution. NO\textsubscript{x} has a continental character and can be transported over long distances between continents; NH\textsubscript{3} is also continental but less than NO\textsubscript{x} and has smaller intercontinental exchange. The scale of N problems in estuaries and coastal seas depends on the extent of the river basin feeding them. The scales are important for the abatement strategy.

2.7.1 Nitrogen leaching in soil and groundwater

Water quality is a major concern throughout Europe and other regions of the globe. Nitrate pollution of groundwater poses a recognized risk for its use as drinking water, while eutrophication of surface water due to excessive nutrient loads can lead to algal growth, oxygen deficiencies, and fish kills. Agriculture puts the largest pressure on groundwater and also on surface water pollution (EEA, 2005a). During the 1990s the nitrate concentrations slightly decreased in some European rivers, while they have remained constant in groundwater and high in some regions. Although some improvements have been carried out to reduce the nutrient input from wastewater discharge, diffuse pollution of agricultural origin remains a major threat for waters in the EU (EEA, 2005a). In the period 2000–2003, in EU15 nearly 40% of the groundwater monitoring stations (average values) exceed 25 mg NO\textsubscript{3}/l, and almost 50% of the surface water monitoring stations presents values greater than 10 mg NO\textsubscript{3}/l (EC, 2007a). These values are based on the information reported by EU Member States, and they are affected by the inhomogeneous distribution of sampling stations. The European Community Nitrates Directive (Council Directive 91/676/EEC) aims to control N losses and requires Member States of the European Union to identify areas contributing to N pollution of groundwater and surface water (EC, 2007a). In these areas agriculture may also be restricted. For example, the application of fertilizers should balance the needs of the crops, and the application of manure should not exceed 170 kg N/ha. Nitrate concentrations in drinking water should not exceed 50 mg/l (EC Drinking Water Directive, EC, 2007a).
Figure 2.12. Amounts of N contained in internationally traded products: (A) fertilizer (31 Tg N), (B) grain (12 Tg N), and (C) meat (0.8 Tg N). Data are for 2004 and are in units of thousand of tons. Minimum requirements for drawing a line are 50 000 tons N, 20 000 tons N and 10 000 tons N for fertilizer, grain and meat respectively (UNEP, 2007; Galloway et al., 2008).

Exceedances of the nitrate standards are a common problem across Europe, particularly from shallow wells. It is often a problem in rural water supplies. For example, in Belgium 29% of 5000 wells examined had concentrations in excess of the limit value (OECD, 1997) and in Bulgaria it was estimated that, in the early 1990s, up to 80% of the population was exposed to nitrate concentrations that exceeded the limit value (OECD, 1995). In about a third of the groundwater bodies for which information was available nitrate concentrations exceeded the recommended limit. In general, there has been no substantial improvement in the nitrate situation in European groundwater and hence nitrate pollution remains a significant problem (EEA, 2003). The same is true for other parts of the globe, where nitrogen leaching to groundwater and subsequent riverine and watershed increase in nitrates are recognized as an increasing issue (UNEP, 2007).

2.7.2 Wastewater discharge to surface water

In surface waters, the overall trend is that N concentrations have remained relatively stable throughout the 1990s and are highest in those Western European countries where agriculture is most intensive. Also in Europe’s seas the nitrate (nitrogen) concentrations have generally remained stable. A few stations in the Baltic, Black and North Seas, though, have demonstrated a slight decrease in nitrate concentrations (EEA, 2003).

Although the most important, agriculture is not the only contributor of nitrogen in European streams. Other inputs of nitrogen come from the atmospheric deposition, household scattered dwellings, and from the direct discharges from sewerage, wastewater treatment plants and industries. The
nitrogen input from direct discharges from sewerage, wastewater treatment plants and industries constitute a threat for surface waters. According to what is reported by Member States, in the year 2000 in EU15, about 80% of wastewaters received adequate treatment before reaching the water bodies and the number of ‘big cities’ (agglomeration with wastewater discharges greater than 150,000 population equivalents) without sufficient treatments has declined from 27 in 1999 to 17 in 2003 (EC, 2007b). However, the percentage of population connected to wastewaters treatment in Southern and Eastern Europe and in the accession countries is relatively low (EEA, 2005a) and information is often missing or not easily accessible (Mulligan et al., 2006). The load can be estimated based on the map of population density, emissions factor per population equivalent, and national statistics of population connected to sewerage system and level of wastewater treatment (Grizzetti and Bouraoui, 2006) and is given in Billen et al., 2011 (Chapter 13 this volume) and Grizzetti et al., 2011 (Chapter 17 this volume).

According to this estimate, the regions affected by higher nitrogen losses to surface waters include Belgium, the Netherlands, the Po valley (Italy), the Brittany region (France). Most of these areas are already totally or partially designated as Nitrates Vulnerable Zones to meet the EU Nitrate Directive.

The EU makes progress in controlling point sources of pollution from industry and households through wastewater treatment. The Urban Waste Water Treatment Directive aims at 75% removal of the N load to the treatment plants in sensitive areas. However, by the end of 1998, still some 37 out of 527 cities had no treatment at all, including Brussels, Milan and Porto, while 57 others, including Aberdeen, Athens, Barcelona, Dublin, Florence, Liège and Marseille, were discharging a large part of their effluents untreated. The situation is generally improving and some of these cities made the necessary investments (EEA, 2005a).

The GEMSTAT database of UNEP (www.gemstat.org) contains currently over 600,000 stations measuring nutrients in ground, surface and estuary waters. The data is used in different assessments to determine the watershed nutrient loads. In order to compare the European situation with the rest of the world the Nitrogen loading indicator is used (Figure 2.13). This indicator provides a measure of potential water pollution by explicitly mapping out the extent of both natural and anthropogenic nitrogen loading to the land and aquatic systems (Green et al., 2004). Global, continental, regional, and coastline-specific estimates of nitrogen loadings onto the continental land mass are derived by applying a mass balance assessment of nitrogen loads to the landscape providing an accounting of nitrogen sources, uptake, transport and leakages to terrestrial and riverine systems. In Europe the water pollution from nitrogen is mainly the result of fertilizer and livestock production with the latter being dominant (Figure 2.13). Only in India and the southern parts of Latin America livestock production is the dominant contributor. In Northern America fertilizers is dominant and in the rest of the world fixation dominates.

2.7.3 Eutrophication and acidification of terrestrial ecosystems

The deposition of N, is far above levels that the ecosystems are able to absorb and handle without adverse consequences for its vitality. Many ecosystems have changed from N limited systems to N saturated systems where N is not limiting anymore. Heathlands, e.g. in the Netherlands and Denmark, have turned into grasslands and forests once dominated by blueberries and lingon-berries have now a large occurrence of grasses (Bobbink et al., 2010). Long-term high N deposition loads to ecosystems will also lead to N leaching into groundwater and surface water runoffs. A substantial fraction, not uncommonly in the order of 30% of the deposition may in this way be leached and transported to marine areas and contribute significantly to the marine eutrophication (EEA, 2005a). Direct deposition of nitrogen to sea surfaces is also of significant importance for the overall N input to marine ecosystems (see Voß et al., 2011, Chapter 8 this volume). About one third of the overall N input to the Baltic Sea, which is suffering from severe algae blooms every summer, is caused by N deposition (Billen et al., 2011, Chapter 13 this volume).

The issues of acidification and eutrophication have been effectively, but not sufficiently, tackled by policy measures in the EU since the 1980s (EEA, 2005a). Several international agreements under the Convention on Long-range Transboundary Air Pollution (LRTAP) have been reached to reduce emissions. With respect to air pollution control, the EU has adopted emission and fuel quality standards for its Member States. In addition, many European countries have adopted national standards and other types of regulation reflecting the seriousness of pollution and national environmental quality priorities (Oenema et al., 2011, Chapter 4 this volume).

An impact indicator that has been extensively used in Europe to assess the policy responses is the proportion of ecosystems where ‘critical loads’ of acidity and eutrophication are exceeded. The critical loads and critical levels refer to thresholds, which can serve as a tool to assess the occurrence of effects in natural ecosystems due to acid deposition. A critical load is a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects do not occur according to current knowledge. Critical loads are ecosystem specific and show a large variation over Europe. Current European policies are anticipated to substantially improve the environmental conditions for Europe’s nature. The area affected by acidification is expected to decrease from 25% in 1990 to less than 5% in 2010. The eutrophication indicator shows the percentage of unprotected ecosystems improving from 55% to 41% (Hetteming et al., 2008). This underlines that eutrophication is a far larger problem in Europe than acidification and needs further abatement/attention. Critical loads are developed for other areas in the world, such as Asia and the USA.

2.7.4 Eutrophication of marine ecosystems

Pollution of coastal seas occurs by the influx of nitrates and DON (dissolved organic N) through – often transboundary – rivers and by atmospheric deposition. Spatially explicit,
quantitative assessments of N inputs to coastal waters and marine ecosystems are not developed in most large-scale assessment reports. However, there are published studies of N inputs for individual estuaries in some regions as well as spatially explicit regional and global river N export models that provide considerable information. One of the first global syntheses of measurements of river nitrogen export, by nitrogen form, was by Meybeck (1982). Since then, several databases have been created documenting measured nitrogen export from rivers for specific regions and globally (Peierls et al., 1991; Meybeck and Ragu, 1995; Smith et al., 2003; LOICZ; UNEP/GPA, 2006). The creation of these databases has highlighted the large variation among rivers, both in terms of nitrogen flux density (kg N/km watershed/yr) and nitrogen load (kg N/watershed/yr), and made it possible to develop a more refined understanding of patterns of nitrogen export at local, regional and global scales. There is considerable spatial variation at local, regional and global scales in the magnitude of nitrogen loading (amount per watershed) as well as nitrogen yield (amount per unit area of watershed) from watersheds to coastal systems (Figure 2.14), with many hotspots around the world.

It is clear from these maps that Europe forms a hot spot in the world with about the highest increases in nitrogen transport to the river mouth.

These hot spots are the result of the growing nitrogen surplus, especially in agriculture. The source contribution varies very much among the different river deltas. Also the environmental influence on transboundary outputs is variable.

The amount of nutrients entering the oceans tend to vary significantly over time and from region to region (see Figure 2.15; UNEP/GPA, 2006), as do the actions to control the problem. Nutrient enrichment between 1960 and 1980 in the developed regions of Europe, North America, Asia and Oceania resulted in major changes in coastal ecosystems. Estuaries and bays are most affected, but eutrophication is also apparent over large areas of semi-enclosed seas, including the Baltic, North Adriatic and Black Seas in Europe, the Gulf of Mexico and the Seto Inland Sea in Japan (UNEP/GPA, 2006).

2.7.5 Global warming: N₂O emissions and other effects of nitrogen

Although the absolute quantities are small, the increasing N₂O production plays an important role in the global warming issue since N₂O is a powerful greenhouse gas. Europe’s emission is estimated at 0.8 Mton N₂O-N – 65% of which is due to ecosystem denitrification (EDGAR, 2010). The greenhouse gas targets for Europe defined in the Kyoto Protocol is a reduction of 8% compared to 1990 (EDGAR, 2010). These targets have to be met during the period 2008–2012. Europe contributes 10.8% of the global N₂O emissions. Nitrous oxide has emerged as such a major GHG issue from agriculture and there has been some

Figure 2.13 Nitrogen loading onto the land mass and aquatic systems as a source for delivery to the coastal zone; a measure of potential water pollution. Total and inorganic nitrogen loads as deposition, fixation, fertilizer, livestock loads, human loads and total distributed nitrogen to the land and aquatic system. Map prepared by Water Systems Analysis Group, University of New Hampshire.
debate about the validity of the emission factors used within IPCC (see e.g. Crutzen et al., 2008). More work is needed to provide consistent factors and use them for abatement strategies (Davidson, 2009).

Apart from N\textsubscript{2}O there are indications that other chemical forms of nitrogen are emitted that could have a major impact on the global warming potential (GWP). Nitrogen trifluoride is about 17,000 times more potent than carbon dioxide. Its estimated worldwide release into the atmosphere this year is equivalent to the total global-warming emissions from Austria (Wen-Tien Tsai, 2008).

Other impacts of nitrogen on the GHG emissions and the net GWP include the effect on carbon sequestration in waters, soils and plants; the effect on aerosol formation causing a direct and indirect cooling effect (through clouds) on the radiation balance and the effect on the emissions of other GHG, such as methane. De Vries et al. (2008) for example estimated that the effect of nitrogen deposition on the net GHG emissions for European forests yielded a net reduction in GWP through the additional sequestration of CO\textsubscript{2}. Recent debate has focused on the response of forests to this effect. The reported amounts of carbon stored per kg N added show a large range from 40 to 400 kg C per kg N deposition (Högberg, 2007; Magnani et al., 2007; De Vries et al., 2008; Reay et al., 2008). Meanwhile, further efforts are being directed to understand the overall effect of N on greenhouse gas balance, including the interactions with nitrous oxide, methane, ozone and aerosols (see Butterbach-Bahl et al., 2011, Chapter 19 this volume).

The nitrogen cycle links with several other cycles, the most important being phosphorus and carbon, acidity and sulphur. For some issues, the complex role of the nitrogen cycle is well appreciated and discussed in Sutton et al., 2011 (Chapter 5 this volume). Climate change is one example where these multifaceted interactions are understood, as the roles of N\textsubscript{2}O and tropospheric O\textsubscript{3} (enhanced due to increased NO\textsubscript{x} emissions) are well understood as a contributing factor in greenhouse gas emissions. However, for other issues, there is a poor understanding of the role of the nitrogen cycle, including its place in the process of carbon sequestration and the interactions among the nitrogen, carbon and phosphorus cycles (Gruber and Galloway, 2008).

2.7.6 Effects of nitrogen on human health

Excess nitrogen inputs to land, air and water can influence human health and welfare in both direct and indirect ways. Some such connections are well known. For example, exposure to high levels of NO\textsubscript{x} in urban areas or along roads cause human health problems, N-driven increases in tropospheric O\textsubscript{3} pose direct health threats to humans (Levy et al., 2005) and cause substantial losses in agricultural productivity (Reilly et al., 2007); the combination of these effects likely has a multi-billion dollar cost. N\textsubscript{i} in the air also contributes to the formation of fine particulates, which are in turn a substantial health threat in polluted regions such as urban areas (Wolfe and Patz, 2002). Excess nitrate in drinking water may also pose risks for some types of cancer and reproductive problems, though epidemiological data on these links remains too sparse to draw firm conclusions and there is considerable debate and a lack of consensus on the interpretation of medical evidence (van Grinsven et al., 2006; Ward et al., 2005). Nitrate intake through drinking water is only part of the total dietary intake; with the main dietary intake of nitrate for many people being from vegetables and meats.
Jakszyn and González (2006) concluded that: ‘The available evidence supports a positive association between nitrite and nitrosamine intake and gastric cancer, between meat and processed meat intake and gastric and oesophageal cancer and between preserved fish, vegetable and smoked food intake and gastric cancer, but is not conclusive’. Van Grinsven et al. (2006) concluded that there are both experimental and epidemiologic studies that indicate possible chronic health effects associated with consumption of elevated levels of drinking water nitrate, although there is no consistency across all studies. Therefore, the uncertainties associated with risk estimates are considerable, and hamper the design of cost-effective specific preventive measures for sensitive subpopulations or regions. Moreover, the enhanced risk of nitroso compounds (NOC)-induced toxicity as a result of high drinking water nitrate in combination with other individual risk factors, such as inflammatory diseases, emphasizes the importance of changing the limit values only when such risks have been carefully evaluated. At this moment this is not the case. Likewise, uncertainties do not allow an estimate of the health losses related to methemoglobinemia due to drinking water nitrate. Evidence is emerging for possible benefits of nitrate/nitrite as a potential pharmacological tool for cardiovascular health (Wink and Paolocci, 2008).

Although it is not yet possible to estimate net health loss due to nitrate, it is possible to make estimates of potential exposure. Based on data reported to the European Commission about the implementation of the Drinking Water Directive and data on the present nitrate levels in groundwater at drinking water extraction depths, the population in ten west European countries potentially exposed to drinking water exceeding the 50 mg/l nitrate standard, or the 3 mg/l nitrite standard, was estimated at over 9 million (2.7%).

Other feedbacks remain poorly known but are potentially important and costly, including the possible effects of excess nutrients on human infectious and parasitic diseases (Townsend et al., 2003). Diseases that show signs of change following N (and/or P) caused eutrophication include malaria, West Nile virus, cholera and schistosomiasis (Townsend and McKenzie, 2007). These effects are more relevant for other parts in the world. In Europe and in parts of Asia and
the USA the exposure of humans to NO\textsubscript{x} and PM and the intake of NO\textsubscript{3} is the main threat. Nonetheless, the facts that tropical regions will experience marked increases in nutrient loading and also contain the greatest diversity of human parasitic and infectious diseases highlights the need to understand these connections (Townsend and McKenzie, 2007). Finally, it is important to note that a healthy immune system requires adequate nutrition, thus one of the most critical links between fixed nitrogen and many tropical diseases may be via its greater supply in fertilizer to undernourished regions (Sanchez and Swaminathan, 2005).

2.7.7 Conclusions

The nitrogen cascade effect is expected to be relevant in Europe. Through long-range atmospheric transport, river transport or groundwater transport the effects extend from regional to continental (acidification, eutrophication, carbon sequestration, aerosols) and even global dimensions (N\textsubscript{2}O). The cascade depends on the nitrogen status of a region: this is defined as the amount of excess nitrogen in the system (or region) causing effects at different levels in the cascade of N causing a number of different effects. If the nitrogen excess increases, the number of effects in the cascade likely will increase (the cascade length increases). At the same time the area that is affected by nitrogen pollution increases (higher contribution to long-range transport or N\textsubscript{2}O emissions). While the linkages in the cascade effect still require to be quantified at the different scales, the available information already highlights its importance. Only at the beginning of the cascade the form of N, is of importance. In the next stages of the cascade, it will be transformed either in the oxidized or reduced form and the origin is of little importance, whether it comes through the atmosphere or directly from manure or through mineralization or nitrification in the soil.

Within the global context, Europe can be regarded as an excess nitrogen area, in contrast to developing regions such as Africa where nitrogen is limited in food production. Europe was one of the first regions where nitrogen became an environmental issue, with hotspots in the Netherlands, Denmark, France and Italy. Other areas in the world currently experience similar issues, such as parts of the USA, China, India and Latin America. It is expected that the nitrogen situation will become worse. Knowledge on the European nitrogen fixation rates, the transport through environment and cascading effects as described in this European Nitrogen Assessment might serve as input for these other regions. Of enormous significance is that excess nitrogen is linked to many of the major global and regional challenges that policymakers face today, such as globalization, strong development of growing economies, increase in human population, political stress, environmental aspects, etc. A prerequisite to reducing these problems is the development of a sound scientific base to help identify policy options. Furthermore, these issues need be recognized at scientific and political levels. The focus on food production in developed and developing countries should take environmental impacts of nitrogen into consideration. For the future it is envisaged that the focus on the production of biofuels and the increased use of fertilizer will yield similar issues. The basis for a successful approach was laid down in the Nanjing Declaration on nitrogen management (Erisman, 2004). A comprehensive overview of N-related policies in Europe is given in (Oenema et al., 2011, Chapter 4 this volume).

Acknowledgements

This chapter was prepared with the support of the NinE Programme of the European Science Foundation, the NitroEurope IP (funded by the European Commission) and the COST Action 729. Anne-Christine LeGall is acknowledged for drawing and providing Figure 2.2. The authors gratefully acknowledge the contribution of the EDGAR team at the EC Joint Research Centre in Ispra and the Integrated Project of Climate Change and Impact Research: The Mediterranean Environment (Project No. 036961 – CIRCE) for providing detailed global emission maps of Nitrogen Oxides.

References

