

ESF conference in partnership with LFUI

ESF Research Conferences

A Programme of the European Science Foundation

ESF-FWF Conference in Partnership with LFUI Reduced Nitrogen in Ecology and the Environment

Universitätszentrum Obergurgl • Austria • 13-18 October 2006

Chair: Jan W. Erisman • Energy Research Center of the Netherlands (ECN), NL Co-Chair: Mark Sutton • Centre for Ecology & Hydrology, Edinburgh, UK

Invited Speakers will include

- R. Bobbink Utrecht U., NL S. Castaldi Napoli U., IT D. Fowler CEH, Edinburgh, UK
- P. Grennfelt IVL Svenska Miljöinstitutet, SE P. Liss East Anglia U., UK D. Möller TU Cottbus, DE
- O. Oenema Wageningen U., NL B. Pyatt Nottingham Trent U., UK J. Raven Dundee U., UK
- H. Rennenberg Freiburg U., DE N. Risgaard-Petersen NERI., DK
- J. Roelofs Radboud U., Nijmegen, NL J.K. Schjørring Inst. for Jordbrugsvidenskab, Frederiksberg, DK
- M. Sutton Centre for Ecology & Hydrology, Edinburgh, UK

Objectives and aims

- 'A conference at the forefront of scientific developments in an area where scientific interdisciplinary progress is needed'
- Aim for a set of papers for a peer reviewed journal to provide the state of knowledge, gaps and ways to make progress.
- Plenary presentations, discussions, posters and informal exchange of ideas both inside and outside the lecture room will be encourage to reach the targets.

Conference issues

Saturda

Sunday

- Program:
- Posters
- Papers: Environmental Pollution (150)
- Deadline: December 15 (electronic system)
- Guest editors: Mark Sutton, Peringe Grennfelt and me
- Availability of presentations

4	5	16.00 onwards	Registration at ESF-RC desk					
-	å,	20.00	Dinner					
	Ö	21.00	Welcome Drink					
5	Ŀ.	08.45-09.00	Conference Opening					
-	å	Session 1 • Atmosphere – biosphere interactions						
	읦	Chair: Jan Willem Erisman • Energy research Cerdre of the Netherlands, Pettern, NL						
	ŏ	09.00-09.35	Jan Willem Erisman • Energy research Centre of the Netherlands, Petten, NL	Reduced Nitrogen In Ecology and the Environment				
		09.35-10.10	Mark Sutton • Centre for Ecology & Hydrology, Peniculk, Edinburgh, UK	An historical perspective on ammonia				
		10.10-10.45	Ineke Stulen • University of Groningen, Haren, NL	The role of ammonia in plant physiology				
		10.45-11.10	Coffee break					
		Short oral presentations						
		11.10-11.35	Johan Neirynck Research Institute for Nature and Forest, Geraardsbergen, BE	Bidirectional ammonia exchange above a mixed conferous forest				
		11.35-12.00	Eiko Nemitz • Centre for Ecology & Hydrology, Peniculk - Edinburgh, UK	Ammonia - ammonium interactions: effects on surface/atmosphere exchange fluxes and the atmospheric aerosol loading				
		12.00-12.25	Albert Bleeker • Energy research Centre of the Netherlands, Petten, NL	Linking ammonia emission reduction and air concentrations and depositions of reduced nitrogen in Europe				
		13.00	Lunch					
		Session 2 • Agriculture and emissions of ammonia						
		Chair: Oene Oenema • Wageningen University and Research Center, NL						
		14.30-15.05	Oene Oenema	Agriculture and reduced nitrogen: what goes in must come out				
		15.05-15.40	Viney Aneja • North Carolina State University, US	Trends in agricultural ammonia emissions and ammonium concentrations in precipitation over the Southeast and Midwest United States				
		15.40-16.15	Ulrich Daemgen • Federal Agricultural Research Centre, Braunschweig, DE	Emissions, atmospheric concentrations and bulk deposition of reduced nitrogen in Hesse, Germany - steps towards a comprehensive treatment of reactive nitrogen In the atmosphere				
		16.15-16.40	Coffee break					
		16.40-17.15	Mark Theobald Centre for Ecology & Hydrology, Peniculk, Edinburgh, UK	Ammonia emissions from large animal colonies				

÷ШF

CCOSE

Der Wissenschaftsfonds, Universit

Energy research Centre of the Netherlands

Reduced forms of Nitrogen in Ecology and the Environment

Jan Willem Erisman

Outline of presentation

- The earth system
- Reduced nitrogen in ecology
- Industrial production
- Environment
- N management
- Discussion items

Our milky way with a developing solar system (+)

First atmosphere: H₂, He

The earth began as a gas bulb, which slowly cooled down, which is still going on. Through this process the earth is shrinking.

The chemical climate of the earth started with gases from volcanic eruptions

Second atmosphere: H₂O, CO₂, SO₂, CO, N₂, CH₄ and NH₃

Ammonia cloud on Jupiter

NASA, Galileo June 26, 1996

When O₂ increased the reducing conditions disappeared: photosynthesis

Gas

Nitrogen (N2) Oxygen (O2) Argon (Ar) Carbon dioxide (CO2) Neon (Ne) Helium (He) Methane (CH4) Krypton (Kr) Hydrogen (H2)

Volume

780,840 ppmv (78.084% 209,460 ppmv (20.946% 9,340 ppmv (0.9340%) 381 ppmv 18.18 ppmv 5.24 ppmv 1.745 ppmv 1.14 ppmv 0.55 ppmv

Energy research Centre of the Netherlands

9

Reduced nitrogen in nature

- Ammonia and ammonium salts
- The major amines in both air and rain are trimethylamine and methylamine, but dimethylamine, diethylamine and triethylamine.
- Life sustained by amino acids

11 20-10-2006

Energy research Centre of the Netherlands

www.ecn.nl

All organisms depend on NH₃

 Insufficient protein in the diet may prevent the body from producing adequate levels of peptide hormones and structural proteins to sustain normal bodily functions

..... too little too much

Energy research Centre of the Netherlands

www.ecn.nl

Nodules on the roots of leguminous plants fix N₂ via bacteria containing nitrogenase

In most terrestrial animals, GIn also carries ammonia in the blood to the liver & kidneys for excretion as urea.

NH₃ Creation by Nature and Humans

- Since 1960:
 - Flows of biologically available nitrogen in terrestrial ecosystems doubled
 - > 50% of all the synthetic nitrogen fertilizer ever used has been used since 1985
- Humans produce as much biologically available N as all natural pathways and this may grow a further 65% by 2050

Human-produced Reactive Nitrogen

Historical development

Closed nutrient cycles

Manure = food

Fertilizer

Increased production

Intensive livestock breeding

Intensification of agriculture

Nitrogen Cycle

14% of the N produced in the Haber-Bosch process enters the human mouth.....

14% of the N produced in the Haber-Bosch process enters the human mouth.....if you are a vegetarian.

4% of the N produced in the Haber-Bosch process and used for animal production enters the human mouth.

$H \in \mathbb{C} \mathbb{N}$ Industrial production of \mathbb{NH}_3

Production volume and price

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4

Energy research Centre of the Netherlands

www.ecn.nl

Ammonia products

Aquarium test kid

Household application

AMMON

Eliminate Wastewater Ammonia

Even in COLD Weather!

CLICK HERE!

Explosives

Industrial ammonia

Ammonia levels	Health effects
— 5ppm	Olfactory detection
— 20-25ppm	Eye irritation
— ~ 1,500ppm	Cough and froth at the mouth
— 5,000ppm	Deadly

Nitrogen excess

Human and animal health Effects

Sources Chemical/physical interactions

Energy research Centre of the Netherlands

www.ecn.nl

Ammonia in the atmosphere

Paleo records and wet deposition

Fig. 11. Boussingault's ammonia apparatus (Boussingault, 1853a (ADC): pl. i).

East Rongbuk Glacier, Mt. Everest, Chemistry and Stable Isotope Data Hou Shugui, et al., 2003

Deposition maps of Europe

Effects on the environment

- Human health: PM, NO_x/O₃, NO₃ drinking water, plagues, pests and diseases
- Ecosystems: direct effects, plagues, pests and diseases, loss of biodiversity, plant/forest vitality, ecosystem functioning
- (Ground)water pollution
- Eutrophication: Gulf of Mexico Hypoxia Zone.
- Global warming (N₂O) and cooling (aerosols)
- GHG interactions affecting sinks
- Reduces visibility (haze);

Radiative forcing and Nitrogen

Effect of NH₃ reductions on secondary PM

Regulator for other processes, e.g. codeposition between SO₂ and NH₃

Effects: biodiversity

Park Grass experiment, Rothamsted since 1856

Figure 4. Changes in the number of species in the Rothamsted Park Grass Continuous Hay Experiment (Goulding et al., 1998). Unfertilized, ▼; sodium nitrate, plus P, K and Mg, ■; ammonium sulfate alone, ▲.

36 20-10-2006

Overall effects

Effects of reactive nitrogen in the environment

Cascade effect of reactive nitrogen (excess)

	Hours	days	Weeks	months	years	decades	centuries
	air concentrations						
	visibility						
	Depo		sition				
	health	(acute)		health (chronic)		
22		aqu	atic (episo	dic)	aquatic	(chronic)	
	pla	ant respons	es				
			Veg	etation chai	nges		
			soil processes				
					soil r	erves	
					forest ecosystem		
					hea	alth	
					Carbon sequestration		
100						motoriolo	
191 E						materials	a h a n a a
						cimate	change

Effective measures

Energy research Centre of the Netherlands

www.ecn.nl

New items for reduced nitrogen

- Increasing demand of fertilizer: food, biofuels
- NH₃ as a transport fuel?

Ammonia fuelled car, Rjukan 1933